UNIVERSITE DE @Wé TELECOM
VERSAILLES ww» ParisTech

ST-QUENTIN-EN-YVELINES

N =l
universite paris-sacLAY .gm'

Sequence 2.5 — Simple LR Parser

P. de Oliveira Castro S. Tardieu

SLR Parser

= Simple

» Left-to-right: tokens are read from left to right

= Rightmost derivation: reductions are always applied from the
right

Building an SLR Parser

Grammar
(1)S— T#
(2)T — aTbT
()T = U
(4)U— a

= S is the start rule, # is the EOF marker
= Terminals are {a, b, #}

Start State

= Start by adding the start rule

= The . (dot) marks an imaginary cursor in the token flow
= since we just started parsing; we are at the very start of the rule
= we expect a T non-terminal

S—.T#

Figure 1: Start State

Transitive Closure

= We expect a T non-terminal
= therefore, we include all the rules that produce a T
= we add the . at the start of each production rule

S—.T#
T — .aTbT
T—.U

Figure 2: Start State

Transitive Closure

= Now the . is also before a U non-terminal
= therefore, we include all the rules that produce a U

S— . T#
T — .aTbT
T—.U
U— .a

Figure 3: Start State (after closure)

Adding Terminal Transitions

= For every terminal that follows the . we add a transition
= Terminals that do not follow the . will not produce a valid
derivation
= The new state includes every rule that expects an a after the .
= |n the new state, the . moves after the consumed a token

(0)
S— . .T# N (1)
T — .aTbT| ——— | T — a.TbT
T— .U U— a.
U— .a

Figure 4: Terminal transitions

Adding Non Terminal transitions

= For every non terminal that follows the . we add a transition

(1)
T — a.TbT
U— a.
a
(0) /

S— . .T# T)
T — .aThT | ——— S T4
T—.U U '

U—.a \
(3)
T — U.

Figure 5: Non Terminal Transitions

Rules transitive Closure

(1)
T — a.TbT
U— a.
T — .aTbT
T—.U

/ U—.a
(0)

S— . T#
T— albT | —
T—.U

U
U— .a \

Figure 6: Add new rules transitively in state (1)

3)
T —U.

= When the . is at the end, we add a reduce transition

= When we reach with rule (1) the # symbol, we have an accept

state
(1)
T — a.TbT
U — a.
T — .aTbT |
a T—.U
(0) U— .a
S—.T
T T (2) # (4accept)
T aTbT ——— L s 1
T—.U U i)
U— .a \

3)
T — U.

Figure 7: Reduce transitions 10

Adding transitions to state (1)

(0)
S— .T#
T — .aTbT

T —.U
U—.a

a

/(1)X
T — a.TbT
U — a.
T — .aTbT
T—.U
U— .a

e

()
T —aT.bT

P
I

u
s

T

(2)
S—> T.#

(3)
T — U.

(4accept)
S — T+#.

Figure 8: Add transitions to state (1)

11

Adding transitions to state (6)

(6)
T — aTb. T
a ®) b L7 aTeT
@ T T — aT.bT .U
T = aTbT U—.a
U—a +——
P T— .U U
©) Usa |
S— . T# 3
T aTbTH———————— T (—>)U‘ —
U-.a \; (2) # (4accept)
S—> T.# S — TH.

Figure 9: Add transitions to state (6)

12

Adding transitions to state (7)

T b

a “ [F— @
a /

6),
(0 o __— —— (
gt 2 U g G T3mT T)
T = .aTbT | ———> U—a 530 T 1 e, |—— 2
520 TS0 a U a)
T o fe— s .

T \
2
s Py 7
R Jaaceept
5T

t
#.

Figure 10: Adding transitions to state (7)

13

Building Follow Sets

(1)S — T# (2)T — aTbT
3)T—-U (4)U— a

= The Follow set is the set of terminals that may follow a
non-terminal

Follow(T) = {b, #}
Follow(S) = {}

= Because U is at the end of rule (3), everything that follows T
may follow U

Follow(U) = Follow(T) 14

Building the parsing table

= Encodes the automaton in table format
= non-terminal transitions are shifts
= reductions are only affected to the Follow set of the produced

terminal
State a b # S T U
0 sl 2 3
1 sl r4d r4 5 3
2 s4
3 r3 r3
4 (accept)
5 s6
6 sl 7 3
7 r2 r2

5

Shift/Reduce or Reduce/Reduce Conflicts

= A conflict happens when two actions are possible for the same
terminal

= By default, bison uses an LALR parser which is an extension of
SLR

= To debug shift/reduce or reduce/reduce conflicts bison outputs
the parser automaton to a text file.
= During the lab look at src/parser/bison-report.txt

16

Example of parsing (aaababa#)

Stack Input Action
0 aaababa# shift 1
0,a,1 aababa# shift 1
0,a,1,a,1 ababa# shift 1
0,a,1,a,1,a,1 baba# reduce 4 (pop twice the RHS length)

(4) U — a (here pop 2*1 elements)

and follow U transition from state 1 — 3
0,a,1,a,1,U3 baba# reduce 3

(3) T — U (here pop 2*1 elements)

and follow T transition from state 1 — 5
0,a,1,a,1,T,5 baba# shift 6
0,a,1,a,1, T,5,b,6 aba# shift 1

17

Example of parsing (aaabba)

Stack Input Action

0,a,1,a,1,T,5,b,6,a,1 ba# reduce 4
0,a,1,a,1,T,5,b,6,U,3 ba# reduce 3
0,a,1,a,1, T,5,b,6, T,7 ba# reduce 2

0,a,1,T,5
0,a,1,T,5,b,6
0,a,1,T,5,b,6,a,1
0,2,1,T,5,b,6,U,3
0,a,1,T,5,b,6,T,7
0,T,2

0,T,2,#

ba#

Rt ol S

(2) T — aTbT (pop 2*4 elements)
shift 6

shift 1

reduce 4

reduce 3

reduce 2

shift 4

accept

18

Produced Derivation Tree

S

|
AN
7N

L
|

19

