
Sequence 2.4 – Syntax Analysis

P. de Oliveira Castro S. Tardieu

1

Syntax Analysis

A parser transforms a flow of tokens into an Abstract Syntax Tree
let var a := 10 in print_int(a+1) end

Identifier(’a’)

let

IntegerLiteral(10)

Sequence[VarDecl(’a’)]

IntegerLiteral(1)

[FunCall(’print_int’)]

[BinaryOperator(+)]

Figure 1: Translation into AST 2

Bison (Yacc) rules

To generate the parser we use Bison, which is a parser generator.
From a set of grammar rules and production rules it automatically
generates a program that generates an AST.

• terminals are Lexer Token (ID, INT, VAR)

• non-terminals correspond to a token produced by a production
rule.

• A grammar rule is of the form, α → β1β2 . . . βk with α
non-terminal and βi either terminal or non-terminal. It triggers
a production rule that produces a non-terminal of type α.

• The → is also written : in Bison and means that we can
encode the right hand side (RHS) with an AST node of type α.

3

Exemple of Bison Rules

expr : INT
{ $$ = new IntegerLiteral(@1, $1); };

The first line is the grammar rule. It means that if we find a lexer
INT token we can produce a non-terminal expr.

The second line is the production rule. It tells Bison how to build
the Expression node.

• $$ is the result of the production rule
• @1 is the source location of β1, here INT
• $1 is the value of β1, here INT

Here, we show Bison that to produce an expression from an INT
token he need to produce an IntegerLiteral node.

This rule transforms the source code 101 into the AST node
IntegerLiteral(101). 4

A more complex example

Tiger source code example:
var a : int := 10

varDecl : VAR ID typeannotation ASSIGN expr
{ $$ = new VarDecl(@1, $2, $5, $3); };

• $$ is the result of the production rule
• @1 is the source location of VAR (β1)
• $2 is the value of ID (β2)
• $5 is the result of the production rule for expr (β5)
• $3 is the result of the production rule for typeannotation (β3)

5

A more complex example

varDecl : VAR ID typeannotation ASSIGN expr
{ $$ = new VarDecl(@1, $2, $5, $3); };

var a : int := 10

typeannotation = ’int’

vardecl = VarDecl(’a’)

expr = IntegerLiteral(10)

Figure 2: Translation into AST

The type returned by a production rule must be declared in the
preamble with,
%type <VarDecl *> varDecl

6

Disjunctive rules

• Sometimes a non-terminal can capture different RHS
• There are two equivalent ways to express this,

expr: INT { $$ = new IntegerLiteral(@1, $1); }
| ID { $$ = new Identifier(@1, $1); }

;

expr: INT { $$ = new IntegerLiteral(@1, $1); }
;
expr: ID { $$ = new Identifier(@1, $1); }
;

7

Recursive rules

1 ; 2 ; 3; 4 ; 5

Bison
%type <std::vector<Expr *>> nonemptyexprs;
...

/* List is composed of a single expression */
nonemptyexprs : expr { $$ = std::vector<Expr*>({$1}); } ;

1 ; 2 ; 3 ; 4 ; 5
_____________/ ___/
nonemptyexprs expr

/* List is composed of a multiple expressions */
nonemptyexprs : nonemptyexprs SEMICOLON expr /* a recursive rule */

{ $$ = std::move($1); /* $1 is not used anymore */
$$.push_back($3); };

8

Parser conflicts

• Grammar rules can be ambiguous,
expr : expr PLUS expr

| expr TIMES expr;

4 + 2 * 3

+

*4

32

*

4

+ 3

2

Figure 3: Translation into AST

9

Precedence Rules

• To force the parser to chose the right version we use
precedence rules,

• + - * / are left-associative
• + and - are less binding than * and /

Bison
%left PLUS MINUS;
%left TIMES DIVIDE;

10

How does the parser works?

• Bison works by generating the AST bottom-up.

• Whenever it matches the RHS of a rule, it replaces it with a
non-terminal. . .

• . . . the non-terminal is a sub-tree . . .
• . . . which in turn may appear in the RHS of a later rule.

• It is not always wise to apply a rule as soon as possible (see
previous slide)

• To decide when to apply a rule, Bison uses Stack Automatas
which are more complex versions of the DFAs we saw in last
sequence.

11

