
Sequence 2.3 – Lexical Analysis

P. de Oliveira Castro S. Tardieu

1

Review of the Compiler’s Front-end

• The first step to compile a program is to understand its
structure (syntax) and meaning (semantics)

• The analysis is twofold:
• Syntactic analysis parses the program into a abstract syntax

tree (AST) by following grammar rules
• Semantic analysis computes the program meaning

2

Syntactic analysis

• Syntactic analysis itself is composed of two steps:
• The Lexer breaks the program into tokens or words
• The Parser assembles the tokens into an AST by following

Tiger’s grammar rules

Syntactic AnalysisSyntactic Analysis

AST

Tokens

Tiger Source a := 1 + 2

ParserLexer

Figure 1: Syntactic Analysis

3

Tiger tokens

• In Tiger there are different kind of tokens.

Token Examples

Signs or operators ; () + / = <
Reserved words if then else let function
String literals "hello world!\n"
Integer literals 42 -2754
Identifiers my_variable print_int
Comments /* Ignore this */

Example:
if 5 > 2 then print ("five is bigger\n")

4

Breaking the program into tokens?

• A very simple lexer that break a sentence into words
std::string input = "hello world";
auto start = input.begin();
for(auto c = start;; c++) {

if (*c == ' ' || c == input.end()) {
emit_token(std::string(start, c));
start=c+1;

}
if (c == input.end()) break;

}

• Such a simple approach does not scale to Tiger’s complexity
• We require a systematic way to describe token’s rules

5

Regular Expression

• A regular expression describes a language class.
• if describes the language composed of the single word “if”.
• [0-9]+ describes the language of positive numbers:

• characters in the set {0, 1, . . . , 9} ([0-9])
• repeated 1 or more times (+)

• [a-Z][a-Z0-9_]* describes the language of identifiers:
• first one letter ([a-Z])
• followed by a letter, number or underscore
• repeated 0 or more times (*)

6

Regular Expression to DFA

• Every regular expression has an associated Deterministic
Finite Automaton that recognises its language.

i f
start I IF

Figure 2: IF if

[a-Z]

[a-Z0-9_]

start ID

Figure 3: ID [a-Z][a-Z0-9_]*

• The full theory of Regular Expressions and Finite Automata is
out of the scope of these lectures. Ressources for the curious
student are in this week reading list.

7

Combining DFA

• Multiple DFA can be merged to produce a single DFA that
does the full lexical analysis.

i

[a-Z0-9_]

[a-eg-Z0-9_]

[a-hj-Z]

f

[a-Z0-9_]

ID

start

IF

ID

Figure 4: Merging IF and ID DFAs

8

Why use DFA?

• Why use finite automata?
• Automata decides the category of a token or rejects it
• Fast word recognition: the decision is done in O(N) with N the

length of the input
• Compact rules representation

a

t

h
h

m ac

a

b

o b
ac b

h

mostart t

Figure 5: DFA for words in language {combat, chat, hat, cat, bat}

9

Flex

• Flex is a lexer generator
• From a set of regular expressions and extra rules . . .
• . . . Flex produces a DFA

10

Internal Token representation (see parser/tiger_parser.hh)

• Constant tokens such as else or ;represented with,
• a token integer code such as TOK_ELSE (280) or

TOK_SEMICOLON (260)
• a source location (useful to report localized errors)

• Variable tokens such as 42 represented with,
• a code such TOK_INT (295)
• a source location
• the variable content: in this case an int

• Tokens are produced with calls to helper functions,
yy::tiger_parser::make_INT(42, loc);

11

Flex rules

• A Flex rule has two parts:
1. a regular expression
2. an action that usually produces a token

";" {
return yy::tiger_parser::make_SEMICOLON(loc);

}
[a-zA-Z][_0-9a-zA-Z]* {

return yy::tiger_parser::make_ID(Symbol(yytext), loc);
}

• Flex has helper variables and functions, for instance yytext
contains the text matched by the regular expression

12

Flex sub-automata

• Sometimes it is useful to have different regular expression rules
for different scenarios. For example, inside a comment usual
rules do not apply: all text is ignored.

• Flex has support for sub-automata states which change the
current set of rules.

13

Example of sub-automata

• The default state is called INITIAL
• To change states one calls BEGIN(STATE)
• Particular rules of a STATE must be declared inside a

<STATE>{ } block.
"/*" {comment_depth = 1; BEGIN(COMMENT);}
<COMMENT>{

"/*" {comment_depth++;}
"*/" {comment_depth--;

if (comment_depth == 0) BEGIN(INITIAL);}
<<EOF>> utils::error (loc, "unterminated comment");
. {}

}

14

