
Sequence 2.2 – Traversing the tree

P. de Oliveira Castro S. Tardieu

1



What does a tree contain?

• A tree is made of nodes and one of them is the root of the tree.
• Those nodes may be of different types.
• Every type of node has a specific set of attributes.
• Those attributes may be other trees.

For example, a binary addition can be represented as a
BinaryOperation node, with an attribute operation containing
“+”, and two subtrees representing the left hand side and the right
hand side operands.

rightleft

Constant 5

BinaryOperation(op = +)

Constant 1

Figure 1: AST for 5 + 1
2



More complex expressions

• Any expression can be represented as a tree.

left

right

right

left

Constant 7

BinaryOperation(op = ×)

Constant 5

BinaryOperation(op = -)Constant 3

Figure 2: AST for 3×(7 - 5)

• Parenthesized expressions are naturally represented using a
sub-tree, which expresses the intended grouping.

3



Evaluating an expression

We can start with simple rules for evaluating an expression:

• A constant evaluates as itself (Constant 3 gives a result of 3).
• A binary operator

• recursively evaluates its left branch;
• recursively evaluates its right branch;
• applies the operator (e.g., ×) to the two results obtained above.

left

right

right

left

Constant 7

BinaryOperation(op = ×)

Constant 5

BinaryOperation(op = -)Constant 3

Figure 3: AST for 3×(7 - 5)
4



Example of evaluation

left

right

right

left

Constant 7

BinaryOperation(op = ×)

Constant 5

BinaryOperation(op = -)= 3

Figure 4: Evaluating the left branch of ×

5



Example of evaluation (ctd)

left

right

right

left

= 7

BinaryOperation(op = ×)

= 5

BinaryOperation(op = -)= 3

Figure 5: Evaluating the branches of -

6



Example of evaluation (ctd)

left right

BinaryOperation(op = ×)

= 2= 3

Figure 6: Evaluating -

= 6

Figure 7: Evaluating ×

7



Printing an expression

• Let’s assume that we now want to print a representation of a
binary operation, instead of evaluating it. We can adopt a
similar methodology.

• A constant prints its value (Constant 3 prints as 3).
• A binary operation:

• prints an opening parenthesis “(”;
• prints its left operand by calling this procedure recursively;
• prints the operator;
• prints its right operand by calling this procedure recursively;
• prints a closing parenthesis “)”.

• Some parentheses may be superfluous, but they guarantee that
the operator priority (+ vs × for example) does not need to be
considered.

8



Example of printing

left right

BinaryOperation(op = ×)

= (7-5)= 3

Figure 8: Printing 3 and (7-5)

= (3×(7-5))

Figure 9: Printing 3×(7-5)

9



The visitor pattern

• The process for evaluating the value of a tree or for printing it
use the same pattern: subtrees are processed recursively using
the same methodology.

• It is possible to use C++ dispatching capabilities to use a
common pattern (the visitor design pattern) to implement this
kind of tree traversal.

• A visitor is an object with methods for acting on the various
kind of nodes of the visited tree.

• The visitor can maintain internal data in order to perform its
job. For example, a pretty-printer may keep track of the current
level of indentation it is using to render a tree as source code.

10



On the tree side

• Every node that can be visited accepts a visitor through a
method accept(). It then calls the visitor method
corresponding to its type through the visitor visit() method.

class BinaryOperator : public Expression {
...
virtual void accept(Visitor &v) {

// Call the visitor method named `visit()`
// taking a BinaryOperator as argument.
// This works with any object inheriting
// from the Visitor class.
v.visit(*this);

}
...

}

11



On the visitor side

• Every node that can be visited accepts a visitor through a
method accept(). It then calls the visitor method
corresponding to its type through the visitor visit() method.

class PrintingVisitor : public Visitor {
...
void visit(BinaryOperator &o) {

std::cout << '('; // Print opening parenthesis
o.left.accept(*this); // Print left operand
std::cout << o.op; // Print operator
o.right.accept(*this); // Print right operand
std::cout << ')'; // Print closing parenthesis

}
...

}

12



Why the double indirection?

• C++ virtual methods only dispatch on the receiver object (the
object on which the method is called). Here the receiver is the
tree node.

• By going through the right node using the virtual method
accept, the right visitor method visit() is selected by the
compiler from within each accept() method.

// (inside BinaryOperator's visit) Call the Node accept method
o.left.accept(*this); // Dispatch on Node node kind
...
// (inside Node's accept) Call the Visitor visit method
v.visit(*this); // Dispatch on Visitor kind (Printer or Evaluator)
...

13



Conclusion

• The abstract syntactic tree (AST) representing the program
can be easily traversed for various purpose (printing, evaluating,
etc.).

• Traversal of the tree can be implemented using the visitor
pattern.

• A visitor achieves one goal, and may keep internal data
representing the current state of the traversal (such as the
current indentation level to use when pretty-printing a subtree).

14


