
Sequence 2.1 – Abstract Syntax Tree

P. de Oliveira Castro S. Tardieu

1



Understanding the source code

• The compiler job is to understand the program source code and
transform it into an executable representation.

• In order to do this, the compiler needs to assign meaning to
the characters it encounters in the program source.

let var a := 3 in
a := a + 1;
print_int(a);
print("\n") /* Go to next line */

end

In the above source code, the compiler must understand the
meaning of letters, spaces, numbers, semicolons, quotes, etc.

2



Giving meaning to symbols and words

• Symbols and words may have simultaneous meanings
depending on the compilation phase.

• The second a in a := a + 1 is an identifier. It is also the left
operand of the binary operation +.

• Different phases during the compilation process will make use
of the various meanings.

a

constantidentifier

addition left operand binary operation

a 1+

assignment identifier

:=

addition right operand

Figure 1: Understanding a := a + 1

3



Representing the source using an abstract syntactic tree (AST)

A tree can represent the program source in a more structured way:

value

left operand right operand

target

Identifier a

Identifier a

Binary operation +

Assignment

Constant 1

Figure 2: AST for a := a + 1

The tree does not store superfluous information such as comments
which have no use during the compilation process. The tree is an
abstract represention of the syntax of the program source code. 4



Representing the tree in C++

• The tree is represented through a collection of classes
inheriting from the command Node type with two direct
descendants: Expression (to represent Tiger expression) and
Decl (to represent variables and function declarations).

• Every node descendant flavour contains relevant attributes and
subtrees.

class BinaryOperation : public Expression {
std::string operation; // Binary operator such as "+"
Expression *left; // Left operand
Expression *right; // Right operand
...

}

5



Conclusion

• Instead of continuously working from the program source code,
the compiler will first analyze it and build a corresponding tree
which conveys the same information in a more abstract way.

• The tree stores all the relevant information about every entity
encountered in the source code.

• The tree is used in subsequent compilation phases to analyze
the meaning of a program and translate it to machine code.

6


