
Sequence 4.4 – Single static assignment

P. de Oliveira Castro S. Tardieu

1

Optimizations on the IR

The intermediate representation (IR) is a good place to perform
some source code language independent optimizations, such as:

• dead code elimination: some basic blocks are never reachable
and can be removed;

• loop unfolding: when the number of iterations of a loop is
known at compile time, the compiler may prefer to copy the
body code rather than using branches;

• constant propagation: some variables always have the same
value which can be used directly;

• variable fusion: when two variables have the same content at
their point of use, one can be removed and the other always
used.

2

Example: fusion of two variables

let function f(a: int): int =
let var b := a in b * 2 end

in ... end

f can be represented as the leftmost chart below.
b := a

return result return result

result := a * 2result := b * 2

a is never used after b := a: it is safe to remove this copy, and to
use a directly. This gives the rightmost chart above.

3

Blocked fusion

However, the fusion cannot happen as easily if the source variable is
modified afterwards:
let function f(a: int): int =

let var b := a in a := 0; b * 2 end
in ... end

b := a

return result

a := 0

return result

a := 0

result := a * 2 (WRONG!)result := b * 2

4

Unique assignment

let function f(a: int): int =
let var b := a in a := 0; b * 2 end

in ... end

Let’s duplicate variables so that they are each assigned at one place
in the code (a.0, a.1, etc.).

b.0 := a.0

return result.0

a.1 := 0 (UNUSED)

return result.0

a.1 := 0

result.0 := a.0 * 2result.0 := b.0 * 2

5

SSA

This technique is named single static assignment (or SSA):

• Every variable is statically assigned once.
• “Statically” is opposed to “dynamically”: we are talking about

source code (or IR code) assignments. If a block executes
several times, such as a loop body, the variable instance will be
assigned several times.

• To that purpose, every assignment creates a new variable with
an incremented index number (a.0, a.1, etc.).

• Using SSA allows for many optimizations: variables fusion,
constant propagation, commun subexpression elimination, etc.

6

But what about branches?

let function f(a: int): int =
if a < 10 then a*2 else a-1

in ... end

true false

ifresult.0 := a.0 - 1

a.0 < 10

ifresult.0 := a.0 * 2

return ifresult.0

This is not a SSA form: ifresult.0 is statically assigned at two
places. φ functions (phi) come to the rescue.

7

φ functions

A φ function at the beginning of a block takes one of two values
depending on whether the block gets entered by the first branch or
by the second one.
let function f(a: int): int =

if a < 10 then a*2 else a-1
in ... end

true false

temp2.0 := a.0 - 1

a.0 < 10

temp1.0 := a.0 * 2

ifresult.0 := φ(temp1.0, temp2.0); return ifresult.0

8

LLVM mem2reg to the rescue

The mem2reg (memory to register) optimization pass of LLVM will
transform alloca/load/store manipulations into constructs with
φ functions. The code generated initially by our compiler could be:
define i32 @f(i32) #0 { ; a is in %0

%if_result = alloca i32
%2 = icmp slt i32 %0, 10
br i1 %2, label %if_then, label %if_else

if_then: if_end:
%3 = mul i32 %0, 2 %5 = load i32, i32* %if_result
store i32 %3, i32* %if_result ret i32 %5
br label %if_end }

if_else:
%4 = sub i32 %0, 1
store i32 %4, i32* %if_result
br label %if_end 9

LLVM mem2reg to the rescue (cont’d)

After the mem2reg pass, the code becomes as follows. Note the
introduction of a φ function (phi).
define i32 @f(i32) {

%2 = icmp slt i32 %0, 10
br i1 %2, label %if_then, label %if_else

if_then:
%3 = mul i32 %0, 2
br label %if_end

if_else:
%4 = sub i32 %0, 1
br label %if_end

if_end:
%if_result.0 = phi i32 [%3, %if_then], [%4, %if_else]
ret i32 %if_result.0 } 10

Conclusion

• SSA (single static assignment) ensures that every variable is
assigned at one point only in the IR.

• Using SSA allows the compiler to perform many optimizations.
• When entering a block from several possible paths, a φ

function will identify potential variables that should be fused
together as one.

• The mem2reg optimization pass of LLVM will transform an
alloca/store/load based IR into a SSA one.

11

