UNIVERSITE DE @“’%
V%KSAILLES - TI%’I_\ES’ECTI

ST-QUENTIN-EN-YVELINES

P =1
universtite pARIs-SACLAY -ggm‘

Sequence 1.3 — Anatomy of a compiler

P. de Oliveira Castro S. Tardieu

Anatomy of a compiler

= A compiler translates a high-level program (the source code)
into assembly mnemonics.

Source to assembly

Multiplicity of source and executable languages

= How to translate from multiple source languages to multiple
executable formats?

= Writing nine full compilers is costly.

C
Ada

x86
ARM

Fortran - MIPS

Figure 1: 9 full compilers?

Intermediate representation

= Introduce an intermediate representation (IR) to decouple the
source language from the target.
= The IR is a neutral language that is indifferent to both the

source language and the executable format.
C x86

Intermediate
Representation

IS

Fortran arm

Figure 2: Intermediate representation

Ada — mips

Simplified architecture of a modern compiler

= The IR breaks the translation into small self-contained steps,
bringing:
= a more maintainable compiler;
= the need for a single front-end per input language;
= the need for a single back-end per target architecture.

= Many optimization passes can be written as transformations
from IR to IR, benefiting every language and target.

C —|Front-end Back-end| — x86

Intermediate /

Ada — [Front-end —> gepresentation— | Back-end| —= mips

Fortran —|Front-end Back-end| — arm
Middle-end

Fionire 3 Architectiire of 3 modern combiler

This course compiler architecture: the big picture

= Qur compiler is going to have three steps:

= Front-end: syntactic and semantic analyses, translation to IR;

= Middle-end: work on the IR (optimizations);
= Back-end: assembly code generation from the IR.

EscapeChecker

Syntactic analysis

Parser ASH

Toke%
Tiger Source
e Lexer

[Decorated AST

Binding

Figure 4: Tiger compiler

Semantic analysis IR production Middle-end Back-end
Optimized IR []
TypeChacker J|Decorated AST[Z 2 LLVM IR {va_cm% ptimize oo]| Erecutable
Decorated AST

The front-end: syntactic analysis

s The lexer breaks the Tiger code “myvar := 1 + 2" into
tOkenS Such as “myvar”, n:=”’ “1”, n+n’ 11217.
= The parser analyses the grammar according to the grammar

rules of Tiger. It produces an abstract syntax tree (AST).

AST

*'\ger code myvar := 1 + 2

l Syntactic analysis

Tokens
oo}]

Figure 5: Syntactic analysis and AST

The front-end: semantic analysis

= Afterwards, the AST is analyzed and decorated through

multiple passes:
= The binding pass looks up and associates each variable or
function with its declaration.
= The escape checker pass records accesses to variables from
another function.
= The type checker pass checks that all the operations are
correctly typed. For example 5 + "hello" is illegal in Tiger.

AST

l Semantic analysis

Decorated AST — [———————— Decorated AST
Binding f Escape checker t Type checker

Decorated AST

Figure 6: Semantic analysis

The front-end: IR generation

= The IR generation pass generates IR (intermediate
representation) from the decorated AST.

= The AST is specific to the source language (Tiger).

= The IR is independent of the source language.

IR genera tion

Decorated AST LLVM IR
————— 1 IR translation H+———>

Figure 7: IR generation

The middle-end

= The IR being language and target agnostic, optimizations on
the IR are generic.

= This phase is optional: the optimized IR will exhibit the same
behaviour as the input IR (for a correct input).

= We will not have to implement this step: LLVM already
provides an IR optimizer.

LLVM IR Optimized IR
,[Optimizer

Figure 8: Middle-end

10

The back-end

= The back-end translates the IR into assembly code.
= LLVM provides back-ends for different architectures, which we
will use in the project.

Back-end

Optimized IR Executable
——————1 Assembly genera tor f——>

Figure 9: Back-end

11

