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Sequence 1.3 — Anatomy of a compiler

P. de Oliveira Castro S. Tardieu



Anatomy of a compiler

= A compiler translates a high-level program (the source code)
into assembly mnemonics.

Source to assembly



Multiplicity of source and executable languages

= How to translate from multiple source languages to multiple
executable formats?

= Writing nine full compilers is costly.

C
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Fortran - MIPS

Figure 1: 9 full compilers?



Intermediate representation

= Introduce an intermediate representation (IR) to decouple the
source language from the target.
= The IR is a neutral language that is indifferent to both the

source language and the executable format.
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Fortran arm

Figure 2: Intermediate representation

Ada — mips



Simplified architecture of a modern compiler

= The IR breaks the translation into small self-contained steps,
bringing:
= a more maintainable compiler;
= the need for a single front-end per input language;
= the need for a single back-end per target architecture.

= Many optimization passes can be written as transformations
from IR to IR, benefiting every language and target.

C —|Front-end Back-end| — x86

Intermediate /
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Middle-end

Fionire 3 Architectiire of 3 modern combiler



This course compiler architecture: the big picture

= Qur compiler is going to have three steps:

= Front-end: syntactic and semantic analyses, translation to IR;

= Middle-end: work on the IR (optimizations);
= Back-end: assembly code generation from the IR.
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Figure 4: Tiger compiler
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The front-end: syntactic analysis

s The lexer breaks the Tiger code “myvar := 1 + 2" into
tOkenS Such as “myvar”, n:=”’ “1”, n+n’ 11217.
= The parser analyses the grammar according to the grammar

rules of Tiger. It produces an abstract syntax tree (AST).
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Figure 5: Syntactic analysis and AST



The front-end: semantic analysis

= Afterwards, the AST is analyzed and decorated through

multiple passes:
= The binding pass looks up and associates each variable or
function with its declaration.
= The escape checker pass records accesses to variables from
another function.
= The type checker pass checks that all the operations are
correctly typed. For example 5 + "hello" is illegal in Tiger.
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Figure 6: Semantic analysis



The front-end: IR generation

= The IR generation pass generates IR (intermediate
representation) from the decorated AST.

= The AST is specific to the source language (Tiger).

= The IR is independent of the source language.

IR genera tion
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Figure 7: IR generation



The middle-end

= The IR being language and target agnostic, optimizations on
the IR are generic.

= This phase is optional: the optimized IR will exhibit the same
behaviour as the input IR (for a correct input).

= We will not have to implement this step: LLVM already
provides an IR optimizer.

LLVM IR Optimized IR
,[ Optimizer

Figure 8: Middle-end
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The back-end

= The back-end translates the IR into assembly code.
= LLVM provides back-ends for different architectures, which we
will use in the project.

Back-end

Optimized IR Executable
——————1 Assembly genera tor f——>

Figure 9: Back-end
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