
Sequence 1.3 – Anatomy of a compiler

P. de Oliveira Castro S. Tardieu

1



Anatomy of a compiler

• A compiler translates a high-level program (the source code)
into assembly mnemonics.

Source to assembly

2



Multiplicity of source and executable languages

• How to translate from multiple source languages to multiple
executable formats?

• Writing nine full compilers is costly.

C x86

Ada

Fortran

ARM

MIPS
Figure 1: 9 full compilers?

3



Intermediate representation

• Introduce an intermediate representation (IR) to decouple the
source language from the target.

• The IR is a neutral language that is indifferent to both the
source language and the executable format.

C x86

Ada mips

Fortran arm

Intermediate
Representation

Figure 2: Intermediate representation

4



Simplified architecture of a modern compiler

• The IR breaks the translation into small self-contained steps,
bringing:

• a more maintainable compiler;
• the need for a single front-end per input language;
• the need for a single back-end per target architecture.

• Many optimization passes can be written as transformations
from IR to IR, benefiting every language and target.

Optimize & Simplify

C

Ada

Fortran

Front-end

Front-end

Front-end

Intermediate
Representation

Back-end

Back-end

Back-end

x86

mips

arm

Middle-end

Figure 3: Architecture of a modern compiler
5



This course compiler architecture: the big picture

• Our compiler is going to have three steps:
• Front-end: syntactic and semantic analyses, translation to IR;
• Middle-end: work on the IR (optimizations);
• Back-end: assembly code generation from the IR.

Syntactic analysisSyntactic analysis

Semantic analysisSemantic analysis IR productionIR production Middle-endMiddle-end Back-end

Decorated AST

Decorated AST

Executable

Tokens

Tiger Source

Decorated AST

LLVM IR Optimized IR

AST

IRTranslation llvm_llc

Lexer

Parser Binding

EscapeChecker

llvm_optTypeChecker

Figure 4: Tiger compiler

6



The front-end: syntactic analysis

• The lexer breaks the Tiger code “myvar := 1 + 2” into
tokens such as “myvar”, “:=”, “1”, “+”, “2”.

• The parser analyses the grammar according to the grammar
rules of Tiger. It produces an abstract syntax tree (AST).

Syntactic analysisSyntactic analysis

AST

Tokens

AST

Tiger code myvar := 1 + 2

Lexer Parser

21

+myvar

:=

Figure 5: Syntactic analysis and AST

7



The front-end: semantic analysis

• Afterwards, the AST is analyzed and decorated through
multiple passes:

• The binding pass looks up and associates each variable or
function with its declaration.

• The escape checker pass records accesses to variables from
another function.

• The type checker pass checks that all the operations are
correctly typed. For example 5 + "hello" is illegal in Tiger.

Semantic analysisSemantic analysis

AST

Decorated ASTDecorated AST

Decorated AST

Type checkerBinding Escape checker

Figure 6: Semantic analysis
8



The front-end: IR generation

• The IR generation pass generates IR (intermediate
representation) from the decorated AST.

• The AST is specific to the source language (Tiger).
• The IR is independent of the source language.

IR generation

Decorated AST LLVM IR
IR translation

Figure 7: IR generation

9



The middle-end

• The IR being language and target agnostic, optimizations on
the IR are generic.

• This phase is optional: the optimized IR will exhibit the same
behaviour as the input IR (for a correct input).

• We will not have to implement this step: LLVM already
provides an IR optimizer.

Middle-end

LLVM IR Optimized IR
Optimizer

Figure 8: Middle-end

10



The back-end

• The back-end translates the IR into assembly code.
• LLVM provides back-ends for different architectures, which we

will use in the project.
Back-end

Optimized IR ExecutableAssembly generator

Figure 9: Back-end

11


