
Sequence 1.1 – Introduction to Compilers

P. de Oliveira Castro S. Tardieu

1



How to tell machines what to do?

Figure 1: Traditional Loom
2



How to tell machines what to do?

Figure 2: Jacquard Loom (1804)
3



How to tell machines what to do?

Figure 3: ENIAC (1943)
4



How to tell machines what to do?

Figure 4: Macintosh Plus (1986)
5



How to tell machines what to do?

• Switches or connection boards
• Perforated cards
• Stored programs in memory (tapes, disks, electronic memory)

Each constructor has its own instruction set.

6



What is an instruction set?

• Each instruction available in the machine such as addition or
memory moves is encoded as a binary number:

• In the ARM 32 instruction set, 1110000110100000 0000
000000000001, moves the content of register R1 into R0.

• In the Intel x86 instruction set, 10001001 11 000 011, moves
the content of register eax into ebx.

• Remembering binary codes by heart is difficult; we prefer
mnemonics, forming an assembly language:

• mov $r0, $r1
• mov %eax, %ebx

7



No single instruction set!

• Mnemonics (often called instructions) are much easier to
remember and write.

• But each processor has unique features that require different
mnemonics:

• A single x86 instruction can combine arithmetic and memory
operations.

• ARM 32 arithmetic instructions operate only on registers.
• How can we write a portable program that works across all

architectures?
• Mnemonics are low level, easily understood by the machine, but

specific to a given processor.
• We would prefer a high level language easily understood by

humans and targeting many processors.

8



Interpreters

• Define a common high level language.
• For each architecture we write in assembly an interpreter:

• It reads the high-level program instruction by instruction.
• For each instruction it calls an assembly procedure.
• Control-flow instructions (tests, loops) jump to another place.

Advantages
• Only write a single program (the interpreter) in assembly.
• High-level programs are portable across all architectures.

Disadvantages
• Slow: instead of being directly executed each instruction must

be read, decoded and simulated.
• Hard to optimize: instructions are read on the fly, the

interpreter cannot easily simplify or combine patterns.

9



Interpreters and Virtual Machines

• Interpreters are still used today for many languages (Python,
Ruby, PHP).

• Another option is to write a Virtual Machine, an efficient
interpreter for a common assembly language (Java HotSpot
VM, DotNET).

• Modern virtual machines and interpreters use some tricks to
optimize the code and speed-up the execution, but they still
add an additional software indirection layer.

10



Compilers

• While an interpreter translates the common language on the fly,
a compiler translates the whole program to assembly before the
execution.

• Compilers read a high level language and produces an
equivalent assembly program.

• The notion of equivalence is tricky. A simple definition is that
two programs are equivalent when they produce the same
observable effects when fed with the same inputs.

11



Compilers

Advantages
• Cost of translation is payed only once.
• No need to ship either the source code or the interpreter.
• Many optimizations can be applied while compiling.

Disadvantages
• Less flexible and dynamic than an interpreter for distributing

code.
• Some optimizations can only be applied at run time.

12



Image credits

• Traditional Loom, photography by dagrimshaw, CC0 1.0 Public
Domain

• ENIAC, U.S. Army Photo, Public Domain
• Jacquard Loom, photography by D. Monniaux, CC SA 3.0
• Macintosh Plus, photography by B. Patterson, CC BY 2.0

13


