
Sequence 3.4 – Types verification and
inference

P. de Oliveira Castro S. Tardieu

1



Typing operations in the compiler

• Tiger is a statically typed language: every entity in the source
code has a fixed type determined at compilation time.

• A type can be explicit (given by the programmer).
• A type may be implicit (determined unambiguously by the

compiler).
let var a : int := 3 /* Explicit type: int */

var b := a + 4 /* Implicit type: int */
var c := "Hello" /* Implicit type: string */

in
a + b + strlen(c) /* Implicit type: int */

end

2



The types in Tiger

In our Tiger implementation, three types are used:

• int: an 32 bit integer;
• string: a string;
• void: the absence of value

For example, function f below returns void (no value):
let var a := 0

function f() = a := a + 1
in

f(); f(); f(); a /* Returns 3 */
end

3



The type checker

• The type checker (or typer in short) is a compiler pass with
three purposes:

• assign a type to every expression;
• assign a type to every entity (variables, function return values);
• check for type consistency throughout the program.

• The type checker runs after the binder.
• The type checker can be implemented using a visitor walking

the AST.

4



Type checking examples: expressions

• The expression c := a + 2 is easy to type check:
• + is an operation taking two int and returning an int;
• therefore the type of a must be int;
• the type of c must also be int;
• 2 is an IntegerLiteral, which is of type int, so this is

correct.
• The expression c := a < b offers more challenges:

• < (lower than) is a comparaison operation, whose operands
must have the same type (int or string), returning an int;

• therefore the type of a and the type of b must be identical
although unknown at this stage;

• the type of c must be int, as < returns 1 (true) or 0 (false).

5



Type checking examples: if/then/else

In Tiger, everything is an expression, including if/then/else.
if test then something else something_else

• test must be an int (0 means false, anything else means
true);

• something and something_else must have the same type
(int, string or void) which will also be the type of the
whole if/then/else expression.

For example, the following expression returns the smallest value of a
and b, a and b having the same type (int or string):
if a < b then a else b

6



Type checking examples: if/then

It is possible to omit the else part.
if test then something

In this case:

• test is an int;
• something must be void: since there is no else branch, if

test is 0 (false) then no value will be returned, so the type of
the whole if/then expression is void, so the type of the then
branch is void.

Note that in Tiger, () is of type void, so omitting the else part is
equivalent to using else (). This substitution (adding else ())
can even be done in the parser to reduce the complexity of the
various visitors.

7



Summarizing tests

athen b

int

else

T

testif

Figure 1: if/then/else

athen

int void

elsetest ()if

Figure 2: if/then

8



Tiger is simple to type check

Tiger is a simple language to type check while walking the AST:

• the type of every function parameter is explicit (int or
string);

• the return type of every function is explicit (int, string, or
nothing for void);

• any literal can be type checked (strings are surrounded by
double quote characters, integers are not);

• any expression can be type checked since it only refers to
previously defined (and type checked) entities;

• any new variable declaration can be type checked from its
initialization expression.

9



Example: type checking of assignment (:=)

void TypeChecker::visit(Assign &assign) {
// Recursively type check left hand side of :=
// (which is necessarily an identifier)
assign.get_lhs().accept(*this);
// Recursively type check right hand side of :=
assign.get_rhs().accept(*this);
// Check that both sides of := have the same type
// and exit with an error otherwise.
if (assign.get_lhs().get_type() !=

assign.get_rhs().get_type())
error(assign.loc, "Type mismatch in assignment");

// The assignment itself returns no value,
// you cannot do a := (b := c).
assign.set_type(t_void);

}

10



Some languages are harder to type check

• In some programming languages, types may be omitted at
more places than in Tiger.

• In this case, the type checker group entities and expressions in
cliques, which are sets of items sharing the same (possibly
unknown yet) type.

• When the type checker determines that two items must have
the same type, they merge the cliques those items belong to
and check for consistency.

• When the type checker determine that an item must be of a
given type, it assigns this type to every item of its clique, and
merges the clique with an existing clique of the same type if
any.

11



Conclusion

• The type checker (or typer) runs after the binder.
• Its role is to determine the type of expression and entities, and

to check their consistencies according to the language rules.
• In some languages such as Tiger, type checking is a

straightforward operations which only requires walking the AST
once using a visitor.

• In some other languages, type checking requires the use of
more advanced data structures such as cliques in order to
determine the type of various items.

12


