
Sequence 3.3 – Stack frames

P. de Oliveira Castro S. Tardieu

1



Accessing variables

• The binder has bound every variable use (Identifier node in
the AST) to its declaration (VarDecl node).

• However, because of recursive (or mutually recursive) functions,
a variable declaration (including a function parameter) may
denote several values at the same time.

1 let function fact(n: int): int =
2 if n <= 1 then 1 else n * fact(n-1)
3 in
4 fact(5)
5 end

• Here we end up with 5 nested calls to fact, with 5 values for n
(5 for the first call, then 4, . . . , down to 1).

2



Function frames

• Every time we enter a new function, we need to build a new
frame to hold the values of the variables defined in the function
(starting with the function parameters).

• Frames must not be confused with scopes: scopes are used by
the binder to lexically determine which variable must be visible,
and frames are used to hold the variables contents at run time.

• Conceptually, a frame is a mapping between VarDecl nodes
and values representing the variable content.

• Frames are stored on the stack.

3



Back to our example

let function fact(n: int): int =
if n <= 1 then 1 else n * fact(n-1)

in
fact(5)

end

• During the first call fact(5), a frame is built on the stack and
associates the value 5 to the VarDecl of n.

• During the second call fact(n-1=4), a frame is built on the
stack and associates the value 4 (result of the expression) to
the VarDecl of n.

4



Discarding stack frames

let function fact(n: int): int =
if n <= 1 then 1 else n * fact(n-1)

in
fact(5)

end

• When we later get back from this second call with a result of
fact(4)=24, we discard the frame built for this call from the
stack, which gives us again access to n being equal to 5. n*24
is equal to 120, which is the expected result.

5



Putting everything together

• The binder uses scopes to bind every Identifier node in the
AST to the corresponding VarDecl node.

• At run time, every function call will create a new frame in
which we will bind newly encountered VarDecl to a place
where the corresponding value will be stored.

• Reading or modifying a variable value at run time is easy: just
look it up using its VarDecl in the current frame.

• However, only locally created variables are present in the
current frame. How is it possible to access variables declared in
an outer scope?

6



Accessing outside variables

let var a := 3
function add(b: int) = a := a + b

in
add(2); print_int(a) /* Prints 5 */

end

• A toplevel frame contains the value of variable a
• When add is called, a new frame is created and holds the value

for the b parameter.
• It is necessary to access the one level up frame from within add.
• We need to pass add an extra parameter which is a pointer

onto the outer frame.

7



Accessing variables more than one level above

let var a := 3
function f(b: int) =

let function add() = a := a + b
in add() end

in
f(2); print_int(a) /* Prints 5 */

end

• When accessed from function add, a is located in the frame
two level up.

• In every frame, we will store an up pointer to the frame above.
This way, the code generated for add will be able to walk the
frames chain up two times in order to locate a.

8



Knowing how far to walk the frames chain up

• In order to know how many times one must walk the frame
chain up, we assign depth information to every variable
declaration and use in the binder.

• The starting depth is 0. Every time we encounter a function
declaration and analyze its body, we increment depth by one.
When we are done analyzing the body, the depth is
decremented.

• Every time we encounter a variable declaration (VarDecl) or a
variable use (Identifier), we store its depth.

• The difference of depths between a variable use (Identifier)
and a variable declaration (VarDecl) gives the number of steps
we must walk up the frames chain to find the variable content.

• If a variable is accessed from a depth greater than its
declaration, it is said to escape its frame.

9



Annotated example

• /*e*/ denotes an escaping declaration, /*2*/ that the depth
difference is 2. Notice that b escapes too, it is accessed from
within add while being declared in f.

let var a/*e*/ := 3
function f(b/*e*/ : int) =

let function add() = a/*2*/ := a/*2*/ +b/*1*/
in add() end

in
f(2); print_int(a) /* Prints 5 */

end

• f is given the outer frame as extra parameter and stores it in
its own frame, and add is given f frame as extra parameter
and stores it in its own frame. Walking up is easy then.

10



Sibling functions

• It is important to understand that the extra parameter denotes
the frame corresponding to the level right above the called
function, which is not necessarily the current frame.

let var a := 3
function f(): int = a + a
function g(): int = f() + f()

in
print_int(g()) /* Prints 12 */

end

• g is passed the outermost frame as extra parameter.
• When g calls f, it needs to pass it the outermost frame as well,

and not its own frame. f and g are declared at the same depth
and thus share the same extra enclosing frame parameter.

11



Visualizing the sibling stack frames

let var a/*e*/ := 3
function f(): int = a/*1*/ + a/*1*/
function g(): int = f() + f()

in
print_int(g()) /* Prints 12 */

end

12



Choosing the extra frame parameter to pass

• When calling a function declared at the same depth as the
depth where the call takes place, the current frame must be
passed as extra parameter, since the function body depth will
be exactly one more than the current depth.

• When calling a function declared k levels above the depth of
the call (e.g., 1 for a sibling function, since the call is within
the body), the frames chain must be walked up k times.

For example, a recursive call to the current function will walk the
frames chain one time (a function is its own sibling). As a
consequence, it will give itself the same frame that it has received.

13



Conclusion

• Scopes are used by the binder to associate a variable use
(Identifier) to a variable declaration (VarDecl).

• Frames are used at run time as a container for the variables
content.

• Every function receives a pointer to the enclosing function
frame and stores it in its own frame. This pointer is necessary
to access variables defined outside the function but visible from
within.

• By going up the stored frames chain, a function may access a
variable defined several levels above.

14


