
Sequence 3.2 – The binder

P. de Oliveira Castro S. Tardieu

1



The binder

• The lexer and the parser, together, analyze the source code and
check that it adheres to the grammar of the Tiger language.

• The parser then builds an abstract syntactic tree corresponding
to the source code. This phase is named the syntactic analysis.

• At no point so far has anyone checked that variables used in
the program were properly declared.

Checking that variables have been properly declared and linking their
usages to their declaration is the role of the binder. This is part of
the semantic analysis phase, which assigns meaning to the program.

2



Using variables in the AST

• In the AST, a VarDecl node is used to represent a variable
declaration.

• Similarly, a Identifier node is used to represent a variable
usage.

• The binder is a visitor walking the tree to build scopes as let
expressions and function declarations are encountered, and
register VarDecl nodes in the innermost scope.

• At the end of a let expression or a function declaration, the
innermost scope will be discarded.

• The binder will look up variables used in Identifier nodes by
looking first in the innermost scope and going up as needed. It
then stores a reference to the right VarDecl node in every
Identifier, or give an error if the variable cannot be found.

3



Representing scopes

• The binder maintains a stack of scopes.
• Each scope contains a mapping of variables names to their

corresponding VarDecl node.
• When a new scope is created, it is pushed at the top of the

stack.
• When a scope terminates, it is popped from the top of the

stack.
• The stack is searched from the top (innermost scope) to the

bottom (outermost scope).

This construct is also called a chain map, as mapping are chained
and searched in order.

4



A simple example

The current scope stack is represented in comments (top of the
stack is on the right side). Stack is shown as [], and mappings as
{}. We represent declarations as their line numbers for simplicity.

1 /* [] */
2 let /* [{}] */
3 var a := 1 /* [{a => L.3}] */
4 var b := 2 /* [{a => L.3, b => L.4}] */
5 in
6 let /* [{a => L.3, b => L.4}, {}] */
7 var a := 10 /* [{a => L.3, b => L.4}, {a => L.7}] */
8 in
9 ... /* If a is looked up, result will be L.7 */

10 end /* [{a => L.3, b => L.4}] */
11 end /* [] */

5



What about functions?

• The binder binds every Identifier to its corresponding
VarDecl.

• Functions are given a similar treatment: the binder binds every
FunCall (a function call) to the corresponding FunDecl (a
function declaration) by looking up the name of the function in
the scopes stack.

6



After the binder pass

• After the binder has walked the tree, the AST is decorated with
extra information.

• In subsequent passes, we will no longer use variable names as
those can be overloaded when a variable is masked by another
with the same name.

• We will instead use the VarDecl nodes as the identifier of
every variable: if two identifiers point onto the same VarDecl,
they denote the same variables, Otherwise, they denote
different variables, possibly with different types.

• Similarly, we will no longer use the function names, but the
FunDecl nodes which uniquely denote a function.

7



Conclusion

• The binder binds variable uses and function calls to their
current declaration according to the language semantics.

• In doing so, it detects uses of non-existing or non-visible
variables and functions and can report the error to the user.

• After the binder pass, we use the declarations as identifiers for
the variables and functions.

8


